
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

10-05488

 Towards Scalable Parallelism in Monte Carlo Particle
Transport Codes Using Remote Memory Access

Paul K. Romano, Benoit Forget, Forrest B. Brown

SNA + MC - 2010 Conference
October 17-21, 2010
Tokyo, Japan

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

Towards Scalable Parallelism in Monte Carlo Particle
Transport Codes Using Remote Memory Access

Paul K. ROMANO 1, Benoit FORGET 1, and Forrest BROWN 2

1 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

2 Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545-1663, USA

One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems
while coping with less memory per compute node. In this work, we investigate a novel data decomposition method that
would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In
this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and
remotely accumulates local tallies when crossing the boundary of the local spatial domain. Initial results demonstrate
that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may
be difficult due to inefficiencies in the current implementation of RMA operations.

KEYWORDS: Monte Carlo, neutron transport, parallelism, MPI-2, remote memory access, one-sided
communication

I. Introduction
In recent years, there has been an increasing interest in

using Monte Carlo methods to solve the neutron transport
equation not only for validation purposes but also as a
routine design tool. This shift has necessitated higher levels
of complexity and detail in the geometric models being used
and, consequently, higher demand on computing resources.
At the same time, the advancement of high-performance
technical computing has allowed researchers to begin
studying large-scale problems that would have previously
been difficult, if not impossible, to solve using Monte Carlo
methods.

Notwithstanding the benefits of the Monte Carlo method,
the fact remains that simulations using Monte Carlo codes
may take considerably longer to run than their deterministic
counterparts, especially when determining local quantities
such as reaction rates. As a result, Monte Carlo codes are
routinely run in parallel on a workstation, cluster, or
supercomputer. Monte Carlo simulations are inherently
parallel since each stochastic realization of a neutron being
tracked through phase space is completely independent of all
other realizations. This is especially true for fixed source
problems where no synchronization is necessary. For
criticality problems, care must be taken to ensure that the
source distribution and eigenvalue converge before tallying
quantities of interest and to ensure reproducibility.

However, the ability to run a Monte Carlo code in parallel
depends not only on the nature of the simulation but also on
the computer architecture it is being run on. In order for
most Monte Carlo codes to run in parallel, each process must
have access to all the geometry and cross-section data. This
means that the problem data are replicated and made
available to each processor, thus imposing a constraint on

the amount of system memory required. For example, if the
geometry and cross-section data consume 4 GB of memory
and the user desires to run on 8 processors, the total memory
requirement will be at least 32 GB. For high-fidelity
problems such as a reactor full-core model with hundreds or
thousands of depletion zones, it may not be possible to use
all the processors on a single node1 if doing so would
exceed the amount of memory available on that node.

II. Methodology
II.1. History and Motivation

Over the course of the last 40 years, microprocessor
architecture and manufacturing processes have improved
dramatically as evidenced by the persistent trend of
increasing transistor density, larger die sizes, and increasing
processor clock frequency. The clock frequency is often used
as a measure of the performance of a processor. Thus, the
performance of processors has also improved over time due
to higher clock frequencies which allow for more operations
per second.

However, in the last half decade, we have seen only
modest increases in clock frequencies. Nowadays, major
improvements in performance are achieved by other means
such as pipelining, instruction-level parallelism, multiple
functional units, and most importantly multi-core and
many-core processors.

The advent of multi-core chips has forced a paradigm
shift in the programming world, with increased emphasis on
threaded calculations (e.g., using OpenMP or pthreads) on a

1 By “node” here, we mean a typical symmetric multiprocessing

(SMP) machine whereby multiple processors or cores are
connected to a single shared memory.

single SMP node, with message-passing (e.g., OpenMPI,
MPICH2) between different nodes. Having a greater number
of cores per processor will only benefit true performance if
programmers take advantage of the parallelism inherent in
the architecture.

The above considerations lead one to conclude that in the
near future, symmetric multiprocessing nodes will likely
have hundreds of processor cores all sharing memory. The
memory available on each node to be shared among cores
will likely show only modest growth, leading to possibly less
memory per core. In turn, the memory required by Monte
Caro simulation will grow over time due to both the
increasing fidelity of problems being simulated as well as a
higher number of processors on a single shared memory
node. As a result, there will be a need for new methods that
cope with limited memory in Monte Carlo (and other)
simulations.

II.2. Data Decomposition

In order to run a problem which would exceed the
memory of a single node, the typical approach is to
decompose the spatial domain and follow particles in a
single domain on one compute node, moving particles
between domains as needed. While this may work well for
problems where the particle distribution is nearly uniform,
non-uniformity may lead to poor load balancing, possibly
even zero speedup due to idle processors and increasing
communication. The inherent parallelism in Monte Carlo is
over particles, not over spatial domains.

In this paper, we look at an alternative scheme for
parallelization. In this scheme, the problem data are still
spatially decomposed, but need not reside locally on the
compute nodes. Rather than assigning particles to compute
nodes based on their spatial coordinates, parallelism on
particles is achieved by having each compute node retrieve
geometry and cross-section data from other nodes only as
needed. This approach is reminiscent of schemes used in the
early days of computing, where much data was stored in
extended memory devices (e.g., LCM, ECS, SSD) or disk
storage and fetched into memory as needed. This approach
ensures that each compute node follows the same number of
particles and thus performs approximately the same amount
of work.

The mapping of the particle and data processes onto the
computing nodes is very flexible in the proposed data
decomposition method. Since one-sided communication
allows any one node to fetch data from another node as
needed, the geometry and cross-section data can be stored
anywhere in memory. The particle and data processes could
thus be mapped to the same or different computing nodes. If
needed, data nodes could be replicated to prevent contention
between two nodes trying to access the same data.

II.3. Network Communication

The inherent limitation of the proposed method is greater
communication as opposed to greater memory. Although
message-passing would normally make such a scheme
highly inefficient, the introduction of remote data access

features in MPI-2 (one-sided remote puts and gets) could
make it an effective approach for solving problems too large
to fit in the memory of a single node. It is instructive at this
point to review the basics of one- and two-sided
communication.

II.3.a. Remote Memory Access

The Message Passing Interface (MPI) has become the
de-facto standard API for programming parallel computers.
The MPI-1 standard1) was entirely based on what's known as
“two-sided communication”. In this model, two processes
can send data to one another, but in doing so, both processes
must explicitly know that the communication is taking place.
Thus, one process issues a command to send data from a
buffer in its memory while the other process issues a
command to receive data into a buffer in its memory.

The MPI-2 standard2) introduced a set of features called
one-sided communication. This mode of communication
allows a process to remotely access the memory of another
process without explicitly issuing a call to an MPI routine,
hence the alternate name remote memory access (RMA). In
order to do so, the originating process must specify all the
communication parameters. The target process may not even
know what buffer in memory was accessed or which remote
process accessed its memory.

There are three basic RMA communication calls: remote
reads (MPI_GET), remote writes (MPI_PUT), and remote
updates (MPI_ACCUMULATE). The operation performed
during the remote update could be adding a value to a remote
buffer, multiplying it by a value, or one of a number of other
options.

II.3.b. Algorithm

In the data decomposition algorithm, we subdivide the
domain of the problem over a number of nodes as illustrated
in Figure 1. Each colored region corresponds to a
subdomain that is stored on one node. When a particle hits
the boundary of the subdomain, rather than moving the
particle to another processor as in the domain decomposition
method, the node remotely retrieves the geometry for the
region which it is about to enter and accumulates any tallies
for the previous region it was in. One also needs to
accumulate tallies whenever a particle leaks out of the
geometry or is absorbed by a material.

Figure 1: Decomposition of geometry into several subdomains

While the basis of the method is simple enough, the devil

is in the details. There are many variables at hand that make
actually implementing this method in an efficient way a
difficult problem. For instance, one should consider how
large the subdomains should be, how each node will know
where to retrieve data from and accumulate tallies to, when
should problem data be replicated, etc. Rather than deal with
all the complexities at hand immediately, in this paper we
implement the method in a simple Monte Carlo code to gain
some basic insights into the potential performance of this
algorithm.

II.4. Performance of MPI Implementations

Before we begin looking at the performance of the data
decomposition method itself, it is instructive to first look at
the performance of the underlying remote memory access
routines in various MPI implementations since the method
relies heavily on RMA functionality. While there are many
MPI implementations in existence, the two major
implementations with large developer communities and
active development are OpenMPI and MPICH2. Both of
these implementations fully conform to the MPI-2 standard.

To test the performance of one-sided communications, we
looked at the average time it took to complete a remote read
and a remote update for OpenMPI 1.4 and MPICH2-1.2.1.
Figure 2 shows how the average time varies with the
number of nodes simultaneously making calls to MPI_GET.
We note that each process calling MPI_GET was remotely
getting data from a distinct node so that there should be no
data contention.

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 5e-05

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
(s

)

Compute Nodes

MPICH2
OpenMPI

Figure 2: Average time to perform MPI_GET for MPI

implementations

Figure 3 shows that remote updates perform similar to

remote reads. It is clear from these figures that using
OpenMPI in its current release will result in non-scalable
code since the average time to perform an RMA operation
increases with the number of nodes. Thus, we have elected
to use MPICH2 for any testing and performance studies.

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
(s

)

Compute Nodes

MPICH2
OpenMPI

Figure 3: Average time to perform MPI_ACCUMULATE for

MPI implementations

III. Performance Studies
III.1. Description of Simple Code

As a first step, a simple Monte Carlo criticality code was
written in Fortran 90 and parallelized using point-to-point
and collective communications. The MPICH2
implementation was used to provide capabilities for
message-passing and remote memory access. To make
matters simple, only one energy group is used and scattering
is assumed to be isotropic in the lab coordinate system. No
variance reduction techniques are employed, so a particle's
weight does not change throughout its history.

The geometry is divided into a three-dimensional
structured rectangular mesh, and each mesh cell is assigned a
material number. The outer edges of the geometry can be
assigned either vacuum or reflective boundary conditions.
The method of successive generations is employed to
converge on a stable fission source distribution and
eigenvalue.

III.1.a. Retrieval of Problem Data

In our implementation, regions are specified with a
derived data type named region. This data type has three
attributes: the (x,y,z) coordinates of the lower-left corner of
the region, the (x,y,z) coordinates of the upper-right corner of
the region, and the material number assigned to the region.
Thus, the entire geometry consists of one dynamically
allocated array of type region.

The algorithm for dynamic retrieval of geometry data by
the slave processes works as follows. At the beginning of a
particle's life as well as each time a boundary is crossed, a
call is made to a routine updateRegion provided the particle
hasn't leaked out of the geometry or hit a reflective boundary
condition. The updateRegion routine checks whether the
particle has hit the edge of its local spatial domain, and if so,
it makes a call to MPI_GET to fetch a new block of region
data that includes the region it is about to enter. To facilitate
this process, each particle is assigned two triplets (i,j,k), one
indicating what global region the particle is currently in and
one indicating what local region the particle is currently in.

The accumulation of local tallies onto the data nodes is
similar in principle to the retrieval of data. The size of the
tally arrays on the compute and data nodes is the same as the

size of the geometry arrays.

III.2. Worst-Case Scenario

Let us now look at the performance of the simple scheme
outlined above to see what improvements and refinements, if
any, are necessary to make. We begin by looking at the
worst-case scenario whereby there is no data decomposition
and no data replication across nodes, i.e. all the problem data
and tally structures sit on the master process.

The worst-case scenario is represented by the diagram in

Figure 4. Here we see that the master process and the sole
data node are one and the same. This will result in
non-scalability for a number of reasons. Firstly, as the
number of compute nodes increases, there will be increasing
contention for retrieving data and accumulating tallies on the
master process. Another possible source of contention will
be simultaneous requests for work by one compute node and
for data by another compute node. This source of contention
would, in theory, be obviated if the network interconnect
supports remote direct memory access (RDMA) wherein the
RMA operations do not interfere at all with computation.

Figure 4: Physical depiction of worst-case scenario

By having all the problem data on one node, we are
guaranteed to have the maximum amount of contention for
data since every compute node will query the master process
for data whenever it needs to get a new geometry region or
accumulate tallies.

There are two manners in which we can test the
performance of this scheme. The first, and more common,
method is to run the problem with varying number of
processors for a fixed amount of work, e.g. 100,000 histories
per cycle. This is known as strong scaling. The other method
is to increase the amount of work proportionally to the
number of processors so that each processor has the same
amount of work to perform regardless of how many
processors are being run on. This ensures that the ratio
between time spent in computation and time spent in
communication should stay equal, and thus, the problem
should scale. This is known as weak scaling.

Based on the above considerations, it should be no
surprise that this scheme shows very poor performance with
an increasing number of processors. Figure 5 shows the
speedup versus the number of compute nodes. Optimal
performance is reached with only three compute nodes. Past

this point, adding further compute nodes only slows down
the overall run due to data contention at the master process.
Each run consisted of 20 cycles with 10,000 histories per
compute node per cycle (weak scaling). These runs were
performed on the Kilkenny cluster at MIT, a commodity
Linux cluster with a Gigabit Ethernet network interconnect.

 0.1

 1

 10

 100

 1 10 100
Pa

ra
lle

l S
pe

ed
-u

p
Compute Nodes

Weak Scaling
Ideal

Figure 5: Speed-up for worst-case scenario

III.3. Best-Case Scenario

The next scenario we look at is one in which each
compute node has a dedicated data node that has all the
problem data fully replicated. In this scenario, there should
be no data contention since no two compute nodes will be
making requests for data on the same data node. The
diagram of this scenario shown in Figure 6 illustrates that
each compute node has its associated data node on the same
physical node. This will minimize the communication
latency since accessing memory on the same physical node
should be faster than accessing memory on a different node.

For the worst-case scenario, it was sufficient to see that
even with weak scaling, the scheme was non-scalable.
However, for the best-case scenario, it is instructive to look
at both weak and strong scaling. Runs with up to 40 compute
nodes and 40 data nodes were performed, again using the
Kilkenny cluster. For the weak scaling cases, 10,000
histories per compute node were used. For the strong scaling
cases, 400,000 total histories were used.

Figure 6: Physical depiction of best-case scenario

With no contention for data on each of the data nodes, the
speed-up becomes nearly linear. Figure 7 shows the speedup

versus the number of compute nodes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

Pa
ra

lle
l S

pe
ed

-u
p

Compute Nodes

Weak Scaling
Strong Scaling

Ideal

Figure 7: Speed-up for best-case scenario

We can see in Figure 7 that weak scaling performs

slightly better than strong scaling as one might expect from
intuition. The results here are encouraging given that the
runs were performed on commodity hardware. On a
supercomputer with a fast network interconnect (e.g.,
InfiniBand), the results should be even better than shown
here.

III.4. Effect of Locality of Data on Communication
Costs

In our best-case scenario above, we conjectured that by
having the data stored on the same physical node as the
compute node, the communication latency would be
minimized. To actually quantify the effect of the locality of
the data on the communication latency, two cases were run
to see how performance fared when having all the data local
to the compute nodes as well as the opposite. These cases are
similar to our best-case scenario above in that each compute
node has a dedicated data node.

In the first case, illustrated in Figure 8, each compute
node has its corresponding data node on a different physical
node. The second case, illustrated in Figure 9, is the same as
our best-case scenario above where each compute node has
its corresponding data node on the same physical node. The
first case will presumably be slower due to a higher
communication latency associated with performing RMA
operations on separate physical nodes. Each of these cases
was run on 16 processes, eight compute nodes and eight data
nodes (including the master process), for 20 cycles with
100,000 histories per cycle.

Figure 8: Physical depiction of non-local data nodes

Figure 9: Physical depiction of local data nodes

The first case with non-local data ran in 87.04 seconds
whereas the second case with local data ran in 19.98 seconds.
Thus, we see that performing RMA operations on non-local
data incurs a factor of about four penalty in execution time
versus performing RMA operations on local data due to the
higher communication latency. This will have important
implications when considering how best to decompose data
over several nodes since it is desirable to have RMA
operations performed on local nodes.

III.5. Effect of Local Mesh Size on Communication
Costs

The size of the mesh data being remotely retrieved or
accumulated may have a drastic effect on the communication
cost. On one hand, having a larger local spatial domain will
result in fewer RMA operations since a particle will cross
the boundary of the local spatial domain with less frequency.
On the other hand, a larger local spatial domain implies that
the cost of performing a single RMA operation will be
higher since there is more data to transfer.

As a first step, we seek to quantify these two opposing
effects by looking at how much data is transferred each cycle
as the size of the local mesh. For this purpose, we looked at
a 2D problem with 18x18 mesh cells. The local mesh size
was varied from 1x1 up to 18x18 (all square meshes). This
problem was run with 10,000 histories per cycle for 100
cycles. The number of MPI_GET calls was tallied each cycle
and then averaged over the cycles. In the 18x18 case, the
entire geometry is available after a single MPI_GET, so the
number of MPI_GET calls will simply be equal to the

number of histories per cycle. Figure 10 shows the number
of MPI_GET calls per cycle as a function of the local mesh
size.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 2 4 6 8 10 12 14 16 18

M
PI

_G
ET

s
pe

r h
is

to
ry

Mesh Size
Figure 10: Remote memory accesses as a function of local mesh

size

We see from Figure 10 that using a local mesh size larger
than about 4x4 for this particular problem yields a negligible
decrease in the number of remote memory accesses. As the
mesh size increases, the amount of data being transferred
with each MPI_GET goes up quadratically (since it is a 2D
problem). This will result in monotonically increasing data
transfer with respect to the local mesh size2. Thus, for this
problem, a small local mesh size (2x2 or 3x3) will result in
optimal run times. We note that these results will be strongly
dependent on the physical nature of the problem, i.e. whether
it is strongly scattering or strongly absorbing.

This simple characterization of the effect of the local
mesh size on the communication cost is not sufficient to
draw any major conclusions. We recommend that further
studies be performed, particularly looking at how the
physical nature of the problem affects data transfer
requirements. In addition to this, another important line of
inquiry will be to look at the time required for a single RMA
operation as a function of the amount of data being
transferred.

IV. Conclusions

Although this approach may end up being a suboptimal
solution at the present time, given the aforementioned trends
it will become increasingly viable in the near future.
Proposed architectures for exaflop systems postulate
millions or 100s of millions of processor cores, with reduced
memory per core. Effective use of such systems for
large-scale Monte Carlo calculations will require extremely
large numbers of independent computational threads as well
as the use of remote data access. Advances in network
interconnects have significantly improved the ability to
transfer large amounts of data with low latency and high
bandwidth (e.g. InfiniBand, 10 Gigabit Ethernet), and these
advances are likely to continue.

2 Note that although going from a 1x1 local mesh to a 2x2 local

mesh yields a 22% decrease in the number of RMA operations, at
the same time the amount of data being transferred with each RMA
operation increases four-fold

Our work to date has focused on basic demonstration and
characterization of algorithms based on a “particle
parallelism plus data decomposition” approach. We have
investigated best- and worst-case bounds on performance,
and are encouraged. Much future work is needed to
investigate such aspects as: the optimal mapping of compute
nodes and data nodes to a given computer system
architecture; the ability to dynamically monitor remote
memory accesses and adjust the compute/data node
mappings; prefetching of remote data to minimize compute
delays; performance scaling for 1000s and 100s of thousands
of processor cores. In addition, some further changes in
Monte Carlo algorithms may also be required, such as: the
use of batch statistics, rather than history-based statistics;
new iterative methods for keff eigenvalue calculations, such
as concurrent calculation of multiple problems, each with
particle parallelism and data decomposition; improved
random number generators with longer periods and efficient
skip-ahead schemes; increased use of on-the-fly computing
methods rather than using precomputed data tables (e.g., for
Doppler broadening of cross-section data).

V. Acknowledgment

This work was funded partly by the Los Alamos National
Laboratory and an NRC Graduate Education Fellowship.

VI. References
1) Message Passing Interface Forum, “MPI: A

Message-Passing Interface Standard Version 1.3,”
University of Tennessee, Knoxville, 2008.

2) Message Passing Interface Forum, “MPI: A
Message-Passing Interface Standard Version 2.1,”
University of Tennessee, Knoxville, 2008.

3) MPICH2 – A high-performance and highly portable
implementation of the Message Passing Interface
standard (both MPI-1 and MPI-2), URL:
http://www.mcs.anl.gov/research/projects/mpich2

4) R. Graham, T. Woodal, J. Squyres, “Open MPI: A
Flexible High Performance MPI,” Proceedings of
PPAM 2005, 228-239 (2005).

